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Abstract 

Vegetable tannins are environmentally friendly tanning agents. However, they generally impart a dark colour 
to the tanned leather and highly contribute to the organic load in wastewaters. In this study, we employed a purifi-
cation protocol separately on chestnut tannin (CT) and sulfited quebracho tannin (QT) to obtain the purified frac-
tions (PCT and PQT). These samples were characterised by GPC, 1H NMR, 13C NMR, FT-IR, and HPLC–DAD techniques 
and applied for tanning tests. Through the purification process, non-tannin components and smaller molecules 
such as gallic acid, glucopyranose, and catechin were effectively removed from CT and QT, which consequently 
led to the reduced moisture content, pH value, and lighter colour of purified fractions. The crust leathers processed 
with PCT and PQT showed desirable light shades. Moreover, the organic loads in PCT and PQT tanning wastewater 
were reduced by 13.5% and 19.1%, respectively, when compared to those in traditional CT and QT tanning wastewa-
ter. Additionally, the physical and mechanical characteristics of crust leathers processed with PCT and PQT were com-
parable to those processed with CT and QT. Thus, purification of vegetable tannins may serve as a feasible strategy 
for producing light-colored vegetable-tanned leather while minimizing organic pollutant discharge during the veg-
etable tanning process.
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Graphical Abstract

1 Introduction
Leather processing, one of the oldest activities of man-
kind, involves the transformation of food by-products 
(hides) into useful and valuable goods (leather) [1–4]. 
Throughout history, this fundamental skill has evolved 
into an intricate art form that produces everyday objects 
and valuable products for renowned fashion designers.

Currently, over 85% of the leather products are tanned 
with Cr(III) salts to produce “wet blue” due to its supe-
rior leather quality, cost-effectiveness, versatility, and 
replicability. The remaining 15% of the market employs 
alternative chrome-free metal salts (such as aluminium, 
titanium, or zirconium salts) or metal-free tanning agents 
like aldehydes, natural or synthetic tannins. These alter-
natives result in the production of chrome-free leather 
[5–8]. However, the use of chrome salts generates high 
quantities of chromium containing solid sludge, thereby 
leading to high disposal costs and environmental burden 
[4, 9–14]. Of every 1000 kg of salted bovine hides deliv-
ered to the tannery, only 250–300 kg is transformed into 
finished leather while the remaining 700–750  kg is dis-
carded as waste, resulting in approximately 15–50  m3 of 
water effluents containing about 250 kg chemical oxygen 
demand (COD) and 100  kg biological oxygen demand 
(BOD) [15]. These statistics, coupled with stringent Euro-
pean regulations that prioritize environment protection, 
have gradually promoted the development and adoption 
of novel sustainable chrome-free and high exhaustion 
tanning systems for leather production [9, 13, 16]. Never-
theless, it should be noted that most chrome-free tanning 
agents also face increasing restrictions under REACH 
regulation due to their adverse impact on human health 
even though they don’t release chromiums. Moreo-
ver, the chrome-free leather usually exhibits inferior 

physical–mechanical properties [8]. Thus far, the choice 
between chrome and chrome-free leather involves com-
plex technical, economic, and political considerations 
that continue to support chrome tanning as the domi-
nant technology for leather production [5, 17].

In the past decade, vegetable biomass has emerged 
as a pivotal research topic in this field, as evidenced by 
numerous publications investigating its potential as tan-
ning agents [18–23]. Vegetable tannins are regarded 
as a valuable alternative to chrome-free leather due 
to their natural origin and absence of hazardous sub-
stances. However, the utilization of vegetable tannins 
is currently limited due to the inferior physical and 
mechanical characteristics as well as higher production 
costs of vegetable-tanned leather. To enhance the tan-
ning effects and improve the overall physical, mechani-
cal, and organoleptic characteristics of vegetable-tanned 
leather, it is a common practice to combine vegetable 
tannins with aluminium salts for tanning. Although this 
approach improves hydrothermal stability and organo-
leptic properties of the resultant leather, it compromises 
the leather versatility and environmental sustainabil-
ity [24–26]. The substantial amount of vegetable tannin 
used (up to 40 wt% based on weight of processed leather) 
negatively affects both the colour of tanned leather and 
COD in wastewater [27]. Thus, there is a great interest in 
exploring new processes that can simultaneously lighten 
the colour and enhance the tanning efficiency of veg-
etable tannin, mitigating their environmental impact on 
wastewater.

Therefore, in this work, chestnut tannin (CT) and 
sulfited quebracho tannin (QT) were subjected to a 
purification protocol to obtain purified tannins (PCT 
and PQT). These samples were characterised using gel 
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permeation chromatography (GPC), nuclear magnetic 
resonance spectroscopy (NMR), Fourier-transform infra-
red spectroscopy (FT-IR), and high-performance liquid 
chromatography (HPLC). The tannin versus non-tannin 
ratio, pH, moisture and ash content were determined. 
Additionally, tanning trials were performed on depickled 
bovine pelts to investigate the tanning effects and envi-
ronmental impacts of PCT and PQT.

2  Experimental section
2.1  Materials
The CT (chestnut tannin derived from Castanea Sativa) 
and QT (sulfited quebracho tannin derived from Schinop-
sis Lorentzii) were supplied by Silvateam (San Michele di 
Mondovì, Italy). The purified tannins (PCT and PQT), 
the residual fractions (RCT and RQT) and bovine depick-
led pelts were also supplied by Silvateam (San Michele di 
Mondovì, Italy). Solvents and chemicals were purchased 
from Sigma Aldrich (Italy) and used without further 
purification.

2.2  Structural characterizations
2.2.1  Moisture content
The drying oven method is a thermogravimetric tech-
nique (loss on drying) in which the sample undergoes 
controlled desiccation for a specified duration of 4 h at a 
constant temperature of 102 °C ± 2 °C. The moisture con-
tent was determined by weighing the sample before (M1) 
and after (M2) drying, and subsequently calculating the 
ratio of weight loss (M1-M2) to the initial sample weight, 
according to Eq. 1:

2.2.2  Ash content
The samples (about 500  mg) were placed into a cruci-
ble and subjected to heating at 550  °C in a muffle fur-
nace. The ash content (%) was determined by calculating 
the difference between the weight before (A1) and after 
(A2) heating, divided by the initial weight of the sample, 
according to Eq. 2:

2.2.3  Tannin content and pH value
The content of tannin and insoluble component in each 
sample was determined using the standard method (ISO 
14088:2020).

(1)M (%) =
M1−M2

M1
× 100

(2)Ash (%) =
A1− A2

A1
× 100

The pH value was measured using a pH-meter (Hach 
Lange, mod. SensiON + PH 3) on a 10% dry matter col-
loidal solution.

2.2.4  GPC analysis
The number-average molecular weight (Mn) of all sam-
ples was determined using an Agilent 1260 Infinity II 
chromatograph equipped with a UV detector (260  nm). 
A HP-PL gel 5 µm Mixed-D column protected with a PL 
gel 5 µm guard column (Agilent) was employed. Tetrahy-
drofuran (THF) served as eluent, and a calibration curve 
was established using polystyrene standards. The envi-
ronmental included a flow rate of 1  mL/min and a col-
umn temperature of 30 °C. The extracts were derivatized 
according to a standard literature procedure prior the 
analysis [28].

2.2.5  NMR analysis
The 1H NMR and 13C NMR spectra were acquired using 
a Bruker UltraShield 400 spectrometer operating at fre-
quencies of 400.0 and 101.0 MHz, respectively. Samples 
weighing precisely 100.0 mg were dissolved in 600 µL of 
deuterated dimethyl sulfoxide (DMSO-d6).

2.2.6  FT‑IR analysis
The FT-IR spectra (1 wt% tannin/KBr) were recorded 
using a Perkin-Elmer Spectrum-One spectrophotometer, 
covering the range from 4000 to 450  cm−1 with 32 scans 
and a resolution of 4  cm−1.

2.2.7  HPLC analysis
The tannins were analysed by HPLC at 260  nm using a 
Perkin Elmer Flexar LC system, which consisted of the 
following parts: a Flexar PDA Plus Detector (diode array 
detector), Flexar Peltier LC Autosampler, Flexar Peltier 
LC Column Oven, a Flexar LC Quaternary Pump, and a 
Flexar Solvend Manger 5-CH Degaser. The analysis was 
performed on a Waters C18 XSelect® HSS T3 column 
(3.5 µm particle size, 4.6 mm × 150 mm) with an accom-
panying guard column (20 mm) made of the same mate-
rial. Identification of different compounds was achieved 
using commercially available standards.

2.3  Tanning tests
Tanning tests were carried out on depickled bovine pelts 
in 25 cm × 20 cm (approximately 300 g, with a thickness 
of 1.3–1.4 mm). The pelts were placed in a drum contain-
ing 100%wt water (based on the weight of pelts), NaCl 
(7°Bè), and 40%wt of tanning agents. Then, the hides 
were left to rotate overnight until reaching pH 4–5 (with 
basification using  NaHCO3 if necessary). The tanned 
hides were dried, and their Ts values (IULTCS/IUP 16, 
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2015) were evaluated. A conventional post-tanning pro-
cess was adopted to obtain the crust leathers.

2.4  Physical–mechanical and organoleptic properties 
and environmental impact

The physical–mechanical properties (including thickness, 
tensile strength, tearing load, and elongation at break) of 
crust leathers were determined according to IUP 6 (ISO 
3376:2020) and IUP 8 (ISO 3377–2, 2016). Organolep-
tic characteristics such as colour, fullness, resistance to 
UV and Xe light, as well as heat stability were assessed 
through manual and visual examination. Each property 
was assigned a score ranging from 1 to 5, with higher 
scores indicating better performance. The COD of waste-
water after tanning processes was analysed using the 
APAT CNR IRSA 5130 method.

3  Results and discussion
Vegetable tannins are naturally occurring water-soluble 
polyphenolic compounds found in various plant parts 
such as tree barks, stems, leaves, seeds, and roots, as 
well as nuts, fruits, spices, and herbs. These compounds 
typically have molecular weights ranging from 500 to 
3,000  Da and can be mainly classified into hydrolysable 
tannins and condensed tannins [29–31]. Hydrolysable 
tannins consist of a carbohydrate core (e.g. glucose) ester-
ified with gallic acid (gallotannins) or ellagic acid (ellagi-
tannins), which can be easily hydrolysed in the presence 
of weak acids or bases. In contrast, condensed tannins 
(known as proanthocyanidins) are composed of flavonoid 
oligomers where the flavonoid units (mainly flavan-3-ols) 
are linked through C4-C6 or C4-C8 bonds (Fig. 1). Con-
densed tannin production accounts for over 90% of global 
commercial tannin output [29, 31]. This study analysed 
commercially available hydrolysable tannin extracted 

from Castanea sativa tree and modified condensed tan-
nin derived from Schinopsis Lorentzii (Fig. 1).

Chestnut extracts are hydrolysable tannins comprising 
a mixture of castalin, vescalin, castalagin and vescalagin, 
along with other small molecules such as gallic acid and 
glucopyranose [32–34]. These ellagitannins are charac-
terized by a glucose core esterified with at least one hexa-
hydroxydiphenyl acidic moiety, which is formed through 
oxidative coupling between two gallic acid units [35].

Quebracho extracts are a mixture of proanthocyani-
dins (i.e. flavan-3-ol oligomers or high molecular weight 
polymers) and traces of smaller molecules such as ellagic 
or gallic acid [36, 37]. Due to their extremely low water-
solubility, commercially available quebracho extracts are 
often sulfited using  NaHSO3 to improve their solubility 
(Scheme 1) [38–41].

3.1  Characterization of tannins before and after 
purification

3.1.1  Tannic content, pH, moisture, and ash content
The CT and QT samples underwent a purification pro-
cess to obtain the PCT and PQT fractions, as well as the 
residual RCT and RQT fractions. The tannin content, 
ratio of tannin to non-tannin (T/nT), moisture content, 
pH value, ash content, and Mn of CT, QT and their puri-
fied and residual fractions were determined and are 
presented in Table 1. The T/nT values of PCT and PQT 
were nearly twice compared to those of CT and QT, pos-
sibly owing to the reduced concentration of non-tannin 
molecules present in the purified fractions. In contrast, 
RCT and RQT showed remarkably low T/nT ratios and 
substantial ash contents because of the presence of abun-
dant non-tannin molecules such as sugars and gallic acid. 
PCT and PQT exhibited relatively low moisture contents, 
which can be ascribed to the increased benzene rings 

Fig. 1 Main specie of chestnut and quebracho tannins
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with hydrophobicity. Meanwhile, the observed low pH 
values of the PCT and PQT may be attributed to the dis-
sociation of phenolic hydroxyl groups. It is noteworthy 
that the PCT and PQT had a remarkably lighter colour 
compared to CT and QT (Fig. 2), which is expected to be 
highly beneficial for leather tanning. Regarding insoluble 
molecules, only negligible amounts were detected in all 
tannin extracts (< 1  mg/mL). The Mn of all samples fell 
within the range of 500–3,000, which is deemed suitable 
for leather tanning. Additionally, the colloidal solution 
of purified tannins was stored in a dark and cool envi-
ronment, showing no formation of precipitates over a 
period of 4–6 months, thereby demonstrating their good 
stability.

3.1.2  NMR analysis
The chemical structure of CT and its purified and 
residual fractions was analysed using 1H and 13C NMR 
spectroscopy (Fig.  3). The 1H NMR spectra of CT can 
be divided into three main regions. Signals observed in 
the chemical shift range between 3.0 and 5.5  ppm were 
ascribed to the CH and  CH2 groups, indicating the 
presence of carbohydrates such as glucopyranose and 
the aliphatic moiety of castalagin and vescalagin. The 
characteristic aromatic moiety of the polyphenols was 

detected between 6.0 and 7.5  ppm, while signals above 
7.5  ppm corresponded to the broad -OH signal from 
phenolic compounds. Moreover, two signals at 6.93 ppm 
and 7.45  ppm were attributed to gallic acid and ellagic 
acid, respectively. The 13C NMR spectra also revealed 
three main sets of signals, in accordance with previous 
literature [32, 42]. Carbon signals ranging from 54.0 to 
78.0  ppm corresponded to the glucopyranose ring and 
aliphatic carbons of castalagin and vescalagin. Signals 
between 100.0 and 150.0 ppm were ascribed to the aro-
matic carbon atoms. Notably, characteristic carbon sig-
nals related to hexahydroxydiphenyl and trigalloyl moiety 
were identified around 110 ppm. Aromatic carbon atoms 
bonded to the -OH functional group resonated between 
140.0 and 150.0 ppm, together with carbonyl ester groups 
at around 170.0 ppm. These findings demonstrated CT is 
a typical ellagitannin.

In 13C NMR spectrum of PCT, glucopyranose signals 
were identified at chemical shifts of 101.9 (a), 76.8 (b), 
73.3 (c), 69.9 (d), 68.4 (e) and 65.2 (f ) ppm (Fig. 3) [32]. 
As for the residual fractions, RCT was mainly composed 
of gallic acid as evidenced by its characteristic peak at 
6.93 ppm in the 1H NMR spectrum. These findings were 
further supported by corresponding peaks observed at 
chemical shifts of 167.8 (1), 145.6 (4,6), 138.1 (5), 120.8 

Scheme 1  Sulfitation of quebracho tannin

Table 1 Chemical composition of CT and QT, as well as their purified and residual fractions

a Ratio of tannin to non-tannin

Sample Color Tannin content 
(%)

T/nTa Moisture content 
(%)

pH Ash content (%) Mn

CT Brown 40.2 4.6 5.0 3.5 0.98 1,350

PCT Yellow 83.1 8.3 4.0 3.3 1.60 680

RCT Brown 52.0 1.2 4.3 3.6 5.06 530

QT Red-brow 79.4 5.2 5.3 4.6 6.52 1,850

PQT Yellow 87.8 11.2 3.9 4.5 3.90 780

RQT Brown 54.3 1.4 4.5 5.2 29.13 650
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(2), and 108.9 (3,7) ppm in its 13C NMR spectrum [43]. 
Interestingly, RCT, obtained as counterpart to PCT, 
mainly composed of gallic acid, thus confirming that 
PCT was obtained by the effective separation of lower 
molecular weight molecules (RCT) from CT through this 
purification process.

As for QT, the 1H NMR spectrum (Fig.  4) exhibited 
three main proton regions, indicating diverse proton 
types. Numerous signals were observed within the range 
of 2.9 to 5.7 ppm, corresponding to CH and  CH2 groups 
attributed to the presence of carbohydrates ring (C ring). 
In the aromatic region (6.0–7.7 ppm), a broad peak was 

Fig. 2 Powders of CT/PCT and QT/PQT

Fig. 3 1H NMR (a) and.13C NMR (b) of CT and its purified (PCT) and residual fractions (RCT); The chemical structure of gallic acid and glucopyranose 
structure (c)
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evident, representing aromatic protons of A and B rings, 
while between 8.4 and 10.5 ppm, a broad peak emerged 
due to the phenolic -OH functional group. In the 13C 
NMR spectra, all peaks have been assigned, confirming 
the flavonoid structure of QT predominantly composed 
of proanthocyanidins (about 95%) [36]. Specifically, sig-
nals in the chemical shift range of 61.0 to 77.0 ppm corre-
sponded to the carbohydrate moiety (C ring), while those 
between 116.3 and 119.9 ppm and at 130.6 ppm (C2’, C3’, 
C6’ and C1’) together with the strong signal at 144.0 ppm 
(C4’, C5’) confirmed the presence of the catechol B-ring 
[44]. The strong signal at 115.1 ppm indicated the occur-
rence of a catechin dimer in QT extracts, as evidenced by 
the formation of a C4-C8 bond. The broad spectra bands 
observed between 150.0 and 160.0 ppm corresponded to 
C5 and C7 bonded to the -OH functional group, whereas 
the peak around 102.0 ppm (C6, C8) indicated the pres-
ence of the resorcinol structure of the A ring. Moreover, 
the signal at 55.8 ppm may be attributed to the methoxy 
groups present in lignin fragments [45, 46].

As shown in Fig.  4, the 1H and 13C NMR spectra of 
PQT exhibited more resolved peaks, indicating the effec-
tive removal of smaller molecules through the purifica-
tion protocol. The presence of lower molecular weight 
substances in RQT fraction was confirmed by their 
highly resolved peaks in the 13C NMR spectra, which was 
further supported by average molecular weight analy-
sis presented in Table  1. Notably, a characteristic peak 
at 115.1  ppm corresponding to oligomeric species was 
absent in RQT fraction, confirming their composition of 

lower molecular weight compounds such as gallic acid 
and catechin (158.8, 147.1, 129.5, 118.3, 102.8, 79.4, 63.1, 
24.4 ppm) [43, 47].

In general, the NMR analysis confirmed the GPC data 
and provided additional information on the composition 
of each analysed fraction. In particular, the purification 
methodology demonstrated notable efficacy in removing 
small molecules such as gallic acid, glucopyranose, and 
catechin, thereby enriching oligomeric structures within 
vegetable tannins.

3.1.3  FT‑IR analysis
The FT-IR spectra of CT and QT, as well as their puri-
fied and residual fractions, are presented in Fig. 5. In the 
FT-IR spectra of CT sample, within the 3400–3000  cm−1 
region, the presence of OH stretching vibration was 
observed. Additionally, CH and  CH2 stretching vibrations 
originating from aliphatic group in CT were identified 
around 2900  cm−1. A medium-strong band at 1739  cm−1, 
characteristic of hydrolysable tannins and attributed to 
the C = O stretching of esters derived from gallic acid, 
was evident in both CT and PCT spectra. Conversely, 
RCT spectrum exhibited typical bands associated with 
gallic acid, and specifically a signal at 1661   cm−1 corre-
sponded to the C = O stretching. The region ranging from 
1614 to 1450  cm−1 displayed similarities across all spec-
tra and corresponded to the C = C aromatic stretching. 
As for the QT sample, the CH and  CH2 stretching vibra-
tions originating from the C-ring were observed around 
2900  cm−1. The presence of the catechin moiety in both 

Fig. 4 1H NMR (a) and.13C NMR (b) of QT and its purified (PQT) and residual fractions (RQT); The chemical structure of QT and catechin (c)
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PQT and RQT was confirmed by strong bands observed 
at 1614   cm−1, 1519   cm−1, and 1446   cm−1, correspond-
ing to the C = C aromatic stretching of condensed tan-
nins [35]. Thus, FT-IR analysis further confirmed that the 
purification process did not modify the primary structure 
of tannin but only removed smaller molecules.

3.1.4  HPLC analysis
HPLC chromatogram of CT (Figure S1) confirmed the 
presence of low molecular weight substances, including 
castalagin, vescalagin, and gallic acid. Remarkably weak 
signal for gallic acid in PCT provided evidence for the 
effective removal of lower molecular weight compounds 
during the purification process. However, both castalagin 
and vescalagin were retained in PCT. HPLC chromato-
gram of QT exhibited greater complexity, with only gal-
lic acid being identified (Figure S2). Nevertheless, it was 
observed that the purification process partially removed 
gallic acid for the much weaker signal of gallic acid in 
PQT.

3.2  Tanning tests, physical and organoleptic properties 
of tanned leather

The tanning effects of CT and QT, as well as their purified 
products (PCT and PQT), were investigated through tan-
ning tests. As shown in Table 2, the tanning performance 
of PCT and PQT was found to be comparable to that of 
CT and QT in consideration of Ts values and physical 
mechanical characteristics of crust leathers, demonstrat-
ing that the purification process has little effect on the 

tanning properties of vegetable tannins. The tearing load 
of all the crust leathers exceeded the minimum require-
ment for upholstery leather, which follows a common 
rigid characteristic of vegetable tanned leather. However, 
the tearing load in PCT and PQT groups was lower com-
pared to the CT and QT groups, indicating that these 
purified products may have enhanced softness of leather 
[9]. Notably, the purification process offers clear ben-
efit by effectively reducing COD by 13.5% and 19.1% in 
wastewater from PCT and PQT tanning process respec-
tively, probably due to the removal of lower molecular 
weight substances in vegetable tannins. Although fur-
ther research is required to elucidate the tanning mech-
anism of different extracts reported in this study, it can 
be inferred that the PCT and PQT pose higher reactivity 
towards collagen, resulting in improved fixation of tan-
nin in leather and thus reducing COD in wastewater. In 
addition, the crust leathers obtained using PCT and PQT 
exhibited noticeably lighter colour, which is conducive to 
the subsequent dyeing effect of leather (Fig. 6).

4  Conclusions
The PCT and PQT samples, derived from CT and QT 
through purification process, were subjected to char-
acterization using GPC, NMR, FT-IR, and HPLC tech-
niques and subsequent tanning of depickled bovine 
pelts. The purification process effectively preserved the 
primary structure of the two tannins while selectively 
removing non-tannin compounds or smaller molecu-
lar components such as gallic acid, glucopyranose, and 

Fig. 5 FT-IR spectra of CT (left) and QT (right), as well as their purified and residual fractions
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catechin. The leathers processed with PCT and PQT 
exhibited lighter colour but comparable organolep-
tic and physical–mechanical properties compared to 
those processed with CT and QT. Notably, the COD in 
wastewater by utilizing PCT and PQT as tanning agent 
was reduced, probably benefited from the removal of 
smaller molecules with poor fixation ability with col-
lagen. Therefore, a rational purification approach for 
vegetable tannins can not only lighten the colour of 
vegetable-tanned leather but reduce the organic load 
in vegetable tanning wastewater, which is worthy of 
further research in the future. This study proposes a 
straightforward and convenient strategy to promote 
high-quality development of vegetable tannins.
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